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INTRODUCTION

Phase contrast imaging is advantageous for

mitigating radiation damage to samples, such
as biological specimens. For imaging at
nanometer or atomic resolution, the required
flux on samples increases dramatically and can
casily exceed the sample damage threshold.
Coherent modulation imaging (CMI) can
provide quantitative absorption and phase
images of samples at diffraction-limited
resolution with fast convergence.

When used for radiation-sensitive samples,
CMI experiments need to be conducted under
low 1llumination flux for high resolution.

Here, an algorithmic framework 1s proposed
for CMI 1involving generalized alternating
projection and total variation constraint. A
five-to-ten-fold lower photon requirement can

be achieved for near-field or far-field

experiment dataset.

METHODS

Generally, phase retrieval 1s a non-convex
optimization problem, due to the intensity
measurement of wavefields.

Unlike convex situations, non-convex optimization
problems are at risk of stagnation at local minima
and saddle points.

Current phase retrieval algorithms usually
introduce additional regularizing priors to the
optimization function to reduce the scope of the
solution space. In the following, we briefly sketch
the basics of the proposed CMI-GAP algorithm.

Objective function:

Figure 1 consists of two parts, forward propagation via
CMI and mnverse propagation via GAP.
The introduction of TV regularization helps improve

the performance under low lighting conditions.
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Inverse problem (ill-posed)

x = argminlly — |AGOII3 + Ag(x) <
lGAP x

(x,2) = argmin lly — |Ax|I3 + llx — zII3 + ATV (2) 1\ :
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(1) x**t=2zF+ AT (4A")" (y — AZ")

(2) Zk+1 — TV(xk+1)

Fig. 1 Flowchart of the proposed CMI-GAP algorithm.

RESULTS

Near-field simulations & Parameters:

»Total illumination photon number: 107/108

» Distance (sample-modulator): 22.1 mm
» Distance (modulator-detector): 21.5mm
» Wave propagation: Angular spectrum

»Sampling intervals: 5.04mm
» Wavelength: 632.8nm
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Fig.2 Reconstruction of the sample given near-field CMI simulated data.
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prox, (x,A) = arg minHAx — sz +Ag(x) (1)
Under GAP framework: ;
(x,z):argmin%Hy—Axuj+lg(z) St.xX=2z (2)
Reformulated as:
(v.2) =argmin |y x[} + [l + () ()
Updating x, given z:
v = argmin [y - Ax|} + x - [} (5)
xk+1:Zk+AT(AAT)_1(y_AZk) (6)
Updating z: given x :
. 2
z = arg min Hx—zH2 +1H2HTV (7)
z" =TV (x*) (8)
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Fig.3 Error metrics comparison Fig.4 Convergence curve

Total illumination photon number: X

Total 1llumination photon number:

Fig.5 Near-field experiments (Only amplitudes)

Number of photons

RMS of CMI-GAP 0.31 0.45
RMS of CMI 0.50 0.76

Table 1. RMS corresponding to the near-field CMI.
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Far-field simulations & Parameters:

> Total illumination photon number: 107/10°
» Distance (sample-modulator): 30.8 mm
» Distance (modulator-detector): 30mm

»Sampling intervals: 5.04mm
» Wavelength: 632.8nm
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Fig.7 Error metrics comparison Fig.8 Convergence curve
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Fig.9 Reconstruction of the far-field CMI experimental data. Top-
right: Reconstructions with proposed algorithm. Bottom-left:
Reconstructions of original algorithm with 2 X 2 subdivision.
Bottom-right: Reconstructions of proposed algorithm with 2 X
2 subdivision.

CONCLUSIONS

These results demonstrate our method outperforms

the current CMI algorithm 1n convergence and
image quality when the flux of i1llumination 1s
lower than 10”7. When the number of photons
reduces below 107°6, CMI failed completely while
some sample features could still be retrieved with
the CMI-GAP algorithm. CMI-GAP i1s robust to
noise with enhancement as much as 20dB on PSNR
and three times on RMS.

The work would make CMI more applicable to the

dynamics study of radiation-sensitive samples.
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